3.102 \(\int \frac {a+b \text {csch}^{-1}(c x)}{x^2 (d+e x^2)} \, dx\)

Optimal. Leaf size=518 \[ \frac {\sqrt {e} \left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}-\sqrt {e-c^2 d}}\right )}{2 (-d)^{3/2}}-\frac {\sqrt {e} \left (a+b \text {csch}^{-1}(c x)\right ) \log \left (\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}-\sqrt {e-c^2 d}}+1\right )}{2 (-d)^{3/2}}+\frac {\sqrt {e} \left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e-c^2 d}+\sqrt {e}}\right )}{2 (-d)^{3/2}}-\frac {\sqrt {e} \left (a+b \text {csch}^{-1}(c x)\right ) \log \left (\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e-c^2 d}+\sqrt {e}}+1\right )}{2 (-d)^{3/2}}-\frac {a}{d x}-\frac {b \sqrt {e} \text {Li}_2\left (-\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}-\sqrt {e-c^2 d}}\right )}{2 (-d)^{3/2}}+\frac {b \sqrt {e} \text {Li}_2\left (\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}-\sqrt {e-c^2 d}}\right )}{2 (-d)^{3/2}}-\frac {b \sqrt {e} \text {Li}_2\left (-\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}+\sqrt {e-c^2 d}}\right )}{2 (-d)^{3/2}}+\frac {b \sqrt {e} \text {Li}_2\left (\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}+\sqrt {e-c^2 d}}\right )}{2 (-d)^{3/2}}+\frac {b c \sqrt {\frac {1}{c^2 x^2}+1}}{d}-\frac {b \text {csch}^{-1}(c x)}{d x} \]

[Out]

-a/d/x-b*arccsch(c*x)/d/x+1/2*(a+b*arccsch(c*x))*ln(1-c*(1/c/x+(1+1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)-(-c^2*
d+e)^(1/2)))*e^(1/2)/(-d)^(3/2)-1/2*(a+b*arccsch(c*x))*ln(1+c*(1/c/x+(1+1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)-
(-c^2*d+e)^(1/2)))*e^(1/2)/(-d)^(3/2)+1/2*(a+b*arccsch(c*x))*ln(1-c*(1/c/x+(1+1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^
(1/2)+(-c^2*d+e)^(1/2)))*e^(1/2)/(-d)^(3/2)-1/2*(a+b*arccsch(c*x))*ln(1+c*(1/c/x+(1+1/c^2/x^2)^(1/2))*(-d)^(1/
2)/(e^(1/2)+(-c^2*d+e)^(1/2)))*e^(1/2)/(-d)^(3/2)-1/2*b*polylog(2,-c*(1/c/x+(1+1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e
^(1/2)-(-c^2*d+e)^(1/2)))*e^(1/2)/(-d)^(3/2)+1/2*b*polylog(2,c*(1/c/x+(1+1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)
-(-c^2*d+e)^(1/2)))*e^(1/2)/(-d)^(3/2)-1/2*b*polylog(2,-c*(1/c/x+(1+1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)+(-c^
2*d+e)^(1/2)))*e^(1/2)/(-d)^(3/2)+1/2*b*polylog(2,c*(1/c/x+(1+1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)+(-c^2*d+e)
^(1/2)))*e^(1/2)/(-d)^(3/2)+b*c*(1+1/c^2/x^2)^(1/2)/d

________________________________________________________________________________________

Rubi [A]  time = 1.06, antiderivative size = 518, normalized size of antiderivative = 1.00, number of steps used = 24, number of rules used = 10, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.476, Rules used = {6304, 5791, 5653, 261, 5706, 5799, 5561, 2190, 2279, 2391} \[ -\frac {b \sqrt {e} \text {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}-\sqrt {e-c^2 d}}\right )}{2 (-d)^{3/2}}+\frac {b \sqrt {e} \text {PolyLog}\left (2,\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}-\sqrt {e-c^2 d}}\right )}{2 (-d)^{3/2}}-\frac {b \sqrt {e} \text {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e-c^2 d}+\sqrt {e}}\right )}{2 (-d)^{3/2}}+\frac {b \sqrt {e} \text {PolyLog}\left (2,\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e-c^2 d}+\sqrt {e}}\right )}{2 (-d)^{3/2}}+\frac {\sqrt {e} \left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}-\sqrt {e-c^2 d}}\right )}{2 (-d)^{3/2}}-\frac {\sqrt {e} \left (a+b \text {csch}^{-1}(c x)\right ) \log \left (\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}-\sqrt {e-c^2 d}}+1\right )}{2 (-d)^{3/2}}+\frac {\sqrt {e} \left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e-c^2 d}+\sqrt {e}}\right )}{2 (-d)^{3/2}}-\frac {\sqrt {e} \left (a+b \text {csch}^{-1}(c x)\right ) \log \left (\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e-c^2 d}+\sqrt {e}}+1\right )}{2 (-d)^{3/2}}-\frac {a}{d x}+\frac {b c \sqrt {\frac {1}{c^2 x^2}+1}}{d}-\frac {b \text {csch}^{-1}(c x)}{d x} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcCsch[c*x])/(x^2*(d + e*x^2)),x]

[Out]

(b*c*Sqrt[1 + 1/(c^2*x^2)])/d - a/(d*x) - (b*ArcCsch[c*x])/(d*x) + (Sqrt[e]*(a + b*ArcCsch[c*x])*Log[1 - (c*Sq
rt[-d]*E^ArcCsch[c*x])/(Sqrt[e] - Sqrt[-(c^2*d) + e])])/(2*(-d)^(3/2)) - (Sqrt[e]*(a + b*ArcCsch[c*x])*Log[1 +
 (c*Sqrt[-d]*E^ArcCsch[c*x])/(Sqrt[e] - Sqrt[-(c^2*d) + e])])/(2*(-d)^(3/2)) + (Sqrt[e]*(a + b*ArcCsch[c*x])*L
og[1 - (c*Sqrt[-d]*E^ArcCsch[c*x])/(Sqrt[e] + Sqrt[-(c^2*d) + e])])/(2*(-d)^(3/2)) - (Sqrt[e]*(a + b*ArcCsch[c
*x])*Log[1 + (c*Sqrt[-d]*E^ArcCsch[c*x])/(Sqrt[e] + Sqrt[-(c^2*d) + e])])/(2*(-d)^(3/2)) - (b*Sqrt[e]*PolyLog[
2, -((c*Sqrt[-d]*E^ArcCsch[c*x])/(Sqrt[e] - Sqrt[-(c^2*d) + e]))])/(2*(-d)^(3/2)) + (b*Sqrt[e]*PolyLog[2, (c*S
qrt[-d]*E^ArcCsch[c*x])/(Sqrt[e] - Sqrt[-(c^2*d) + e])])/(2*(-d)^(3/2)) - (b*Sqrt[e]*PolyLog[2, -((c*Sqrt[-d]*
E^ArcCsch[c*x])/(Sqrt[e] + Sqrt[-(c^2*d) + e]))])/(2*(-d)^(3/2)) + (b*Sqrt[e]*PolyLog[2, (c*Sqrt[-d]*E^ArcCsch
[c*x])/(Sqrt[e] + Sqrt[-(c^2*d) + e])])/(2*(-d)^(3/2))

Rule 261

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a + b*x^n)^(p + 1)/(b*n*(p + 1)), x] /; FreeQ
[{a, b, m, n, p}, x] && EqQ[m, n - 1] && NeQ[p, -1]

Rule 2190

Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/((a_) + (b_.)*((F_)^((g_.)*((e_.) +
 (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[((c + d*x)^m*Log[1 + (b*(F^(g*(e + f*x)))^n)/a])/(b*f*g*n*Log[F]), x]
 - Dist[(d*m)/(b*f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*Log[1 + (b*(F^(g*(e + f*x)))^n)/a], x], x] /; FreeQ[{F,
a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2279

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2391

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> -Simp[PolyLog[2, -(c*e*x^n)]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 5561

Int[(Cosh[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))^(m_.))/((a_) + (b_.)*Sinh[(c_.) + (d_.)*(x_)]), x_Symbol] :
> -Simp[(e + f*x)^(m + 1)/(b*f*(m + 1)), x] + (Int[((e + f*x)^m*E^(c + d*x))/(a - Rt[a^2 + b^2, 2] + b*E^(c +
d*x)), x] + Int[((e + f*x)^m*E^(c + d*x))/(a + Rt[a^2 + b^2, 2] + b*E^(c + d*x)), x]) /; FreeQ[{a, b, c, d, e,
 f}, x] && IGtQ[m, 0] && NeQ[a^2 + b^2, 0]

Rule 5653

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.), x_Symbol] :> Simp[x*(a + b*ArcSinh[c*x])^n, x] - Dist[b*c*n, In
t[(x*(a + b*ArcSinh[c*x])^(n - 1))/Sqrt[1 + c^2*x^2], x], x] /; FreeQ[{a, b, c}, x] && GtQ[n, 0]

Rule 5706

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(a
 + b*ArcSinh[c*x])^n, (d + e*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, n}, x] && NeQ[e, c^2*d] && IntegerQ[p] &&
 (p > 0 || IGtQ[n, 0])

Rule 5791

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Int
[ExpandIntegrand[(a + b*ArcSinh[c*x])^n, (f*x)^m*(d + e*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[
e, c^2*d] && IGtQ[n, 0] && IntegerQ[p] && IntegerQ[m]

Rule 5799

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)/((d_.) + (e_.)*(x_)), x_Symbol] :> Subst[Int[((a + b*x)^n*Cosh[x
])/(c*d + e*Sinh[x]), x], x, ArcSinh[c*x]] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[n, 0]

Rule 6304

Int[((a_.) + ArcCsch[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_.) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> -Subst[Int
[((e + d*x^2)^p*(a + b*ArcSinh[x/c])^n)/x^(m + 2*(p + 1)), x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ
[n, 0] && IntegersQ[m, p]

Rubi steps

\begin {align*} \int \frac {a+b \text {csch}^{-1}(c x)}{x^2 \left (d+e x^2\right )} \, dx &=-\operatorname {Subst}\left (\int \frac {x^2 \left (a+b \sinh ^{-1}\left (\frac {x}{c}\right )\right )}{e+d x^2} \, dx,x,\frac {1}{x}\right )\\ &=-\operatorname {Subst}\left (\int \left (\frac {a+b \sinh ^{-1}\left (\frac {x}{c}\right )}{d}-\frac {e \left (a+b \sinh ^{-1}\left (\frac {x}{c}\right )\right )}{d \left (e+d x^2\right )}\right ) \, dx,x,\frac {1}{x}\right )\\ &=-\frac {\operatorname {Subst}\left (\int \left (a+b \sinh ^{-1}\left (\frac {x}{c}\right )\right ) \, dx,x,\frac {1}{x}\right )}{d}+\frac {e \operatorname {Subst}\left (\int \frac {a+b \sinh ^{-1}\left (\frac {x}{c}\right )}{e+d x^2} \, dx,x,\frac {1}{x}\right )}{d}\\ &=-\frac {a}{d x}-\frac {b \operatorname {Subst}\left (\int \sinh ^{-1}\left (\frac {x}{c}\right ) \, dx,x,\frac {1}{x}\right )}{d}+\frac {e \operatorname {Subst}\left (\int \left (\frac {a+b \sinh ^{-1}\left (\frac {x}{c}\right )}{2 \sqrt {e} \left (\sqrt {e}-\sqrt {-d} x\right )}+\frac {a+b \sinh ^{-1}\left (\frac {x}{c}\right )}{2 \sqrt {e} \left (\sqrt {e}+\sqrt {-d} x\right )}\right ) \, dx,x,\frac {1}{x}\right )}{d}\\ &=-\frac {a}{d x}-\frac {b \text {csch}^{-1}(c x)}{d x}+\frac {b \operatorname {Subst}\left (\int \frac {x}{\sqrt {1+\frac {x^2}{c^2}}} \, dx,x,\frac {1}{x}\right )}{c d}+\frac {\sqrt {e} \operatorname {Subst}\left (\int \frac {a+b \sinh ^{-1}\left (\frac {x}{c}\right )}{\sqrt {e}-\sqrt {-d} x} \, dx,x,\frac {1}{x}\right )}{2 d}+\frac {\sqrt {e} \operatorname {Subst}\left (\int \frac {a+b \sinh ^{-1}\left (\frac {x}{c}\right )}{\sqrt {e}+\sqrt {-d} x} \, dx,x,\frac {1}{x}\right )}{2 d}\\ &=\frac {b c \sqrt {1+\frac {1}{c^2 x^2}}}{d}-\frac {a}{d x}-\frac {b \text {csch}^{-1}(c x)}{d x}+\frac {\sqrt {e} \operatorname {Subst}\left (\int \frac {(a+b x) \cosh (x)}{\frac {\sqrt {e}}{c}-\sqrt {-d} \sinh (x)} \, dx,x,\text {csch}^{-1}(c x)\right )}{2 d}+\frac {\sqrt {e} \operatorname {Subst}\left (\int \frac {(a+b x) \cosh (x)}{\frac {\sqrt {e}}{c}+\sqrt {-d} \sinh (x)} \, dx,x,\text {csch}^{-1}(c x)\right )}{2 d}\\ &=\frac {b c \sqrt {1+\frac {1}{c^2 x^2}}}{d}-\frac {a}{d x}-\frac {b \text {csch}^{-1}(c x)}{d x}+\frac {\sqrt {e} \operatorname {Subst}\left (\int \frac {e^x (a+b x)}{\frac {\sqrt {e}}{c}-\frac {\sqrt {-c^2 d+e}}{c}-\sqrt {-d} e^x} \, dx,x,\text {csch}^{-1}(c x)\right )}{2 d}+\frac {\sqrt {e} \operatorname {Subst}\left (\int \frac {e^x (a+b x)}{\frac {\sqrt {e}}{c}+\frac {\sqrt {-c^2 d+e}}{c}-\sqrt {-d} e^x} \, dx,x,\text {csch}^{-1}(c x)\right )}{2 d}+\frac {\sqrt {e} \operatorname {Subst}\left (\int \frac {e^x (a+b x)}{\frac {\sqrt {e}}{c}-\frac {\sqrt {-c^2 d+e}}{c}+\sqrt {-d} e^x} \, dx,x,\text {csch}^{-1}(c x)\right )}{2 d}+\frac {\sqrt {e} \operatorname {Subst}\left (\int \frac {e^x (a+b x)}{\frac {\sqrt {e}}{c}+\frac {\sqrt {-c^2 d+e}}{c}+\sqrt {-d} e^x} \, dx,x,\text {csch}^{-1}(c x)\right )}{2 d}\\ &=\frac {b c \sqrt {1+\frac {1}{c^2 x^2}}}{d}-\frac {a}{d x}-\frac {b \text {csch}^{-1}(c x)}{d x}+\frac {\sqrt {e} \left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}-\sqrt {-c^2 d+e}}\right )}{2 (-d)^{3/2}}-\frac {\sqrt {e} \left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1+\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}-\sqrt {-c^2 d+e}}\right )}{2 (-d)^{3/2}}+\frac {\sqrt {e} \left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}+\sqrt {-c^2 d+e}}\right )}{2 (-d)^{3/2}}-\frac {\sqrt {e} \left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1+\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}+\sqrt {-c^2 d+e}}\right )}{2 (-d)^{3/2}}-\frac {\left (b \sqrt {e}\right ) \operatorname {Subst}\left (\int \log \left (1-\frac {\sqrt {-d} e^x}{\frac {\sqrt {e}}{c}-\frac {\sqrt {-c^2 d+e}}{c}}\right ) \, dx,x,\text {csch}^{-1}(c x)\right )}{2 (-d)^{3/2}}+\frac {\left (b \sqrt {e}\right ) \operatorname {Subst}\left (\int \log \left (1+\frac {\sqrt {-d} e^x}{\frac {\sqrt {e}}{c}-\frac {\sqrt {-c^2 d+e}}{c}}\right ) \, dx,x,\text {csch}^{-1}(c x)\right )}{2 (-d)^{3/2}}-\frac {\left (b \sqrt {e}\right ) \operatorname {Subst}\left (\int \log \left (1-\frac {\sqrt {-d} e^x}{\frac {\sqrt {e}}{c}+\frac {\sqrt {-c^2 d+e}}{c}}\right ) \, dx,x,\text {csch}^{-1}(c x)\right )}{2 (-d)^{3/2}}+\frac {\left (b \sqrt {e}\right ) \operatorname {Subst}\left (\int \log \left (1+\frac {\sqrt {-d} e^x}{\frac {\sqrt {e}}{c}+\frac {\sqrt {-c^2 d+e}}{c}}\right ) \, dx,x,\text {csch}^{-1}(c x)\right )}{2 (-d)^{3/2}}\\ &=\frac {b c \sqrt {1+\frac {1}{c^2 x^2}}}{d}-\frac {a}{d x}-\frac {b \text {csch}^{-1}(c x)}{d x}+\frac {\sqrt {e} \left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}-\sqrt {-c^2 d+e}}\right )}{2 (-d)^{3/2}}-\frac {\sqrt {e} \left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1+\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}-\sqrt {-c^2 d+e}}\right )}{2 (-d)^{3/2}}+\frac {\sqrt {e} \left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}+\sqrt {-c^2 d+e}}\right )}{2 (-d)^{3/2}}-\frac {\sqrt {e} \left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1+\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}+\sqrt {-c^2 d+e}}\right )}{2 (-d)^{3/2}}-\frac {\left (b \sqrt {e}\right ) \operatorname {Subst}\left (\int \frac {\log \left (1-\frac {\sqrt {-d} x}{\frac {\sqrt {e}}{c}-\frac {\sqrt {-c^2 d+e}}{c}}\right )}{x} \, dx,x,e^{\text {csch}^{-1}(c x)}\right )}{2 (-d)^{3/2}}+\frac {\left (b \sqrt {e}\right ) \operatorname {Subst}\left (\int \frac {\log \left (1+\frac {\sqrt {-d} x}{\frac {\sqrt {e}}{c}-\frac {\sqrt {-c^2 d+e}}{c}}\right )}{x} \, dx,x,e^{\text {csch}^{-1}(c x)}\right )}{2 (-d)^{3/2}}-\frac {\left (b \sqrt {e}\right ) \operatorname {Subst}\left (\int \frac {\log \left (1-\frac {\sqrt {-d} x}{\frac {\sqrt {e}}{c}+\frac {\sqrt {-c^2 d+e}}{c}}\right )}{x} \, dx,x,e^{\text {csch}^{-1}(c x)}\right )}{2 (-d)^{3/2}}+\frac {\left (b \sqrt {e}\right ) \operatorname {Subst}\left (\int \frac {\log \left (1+\frac {\sqrt {-d} x}{\frac {\sqrt {e}}{c}+\frac {\sqrt {-c^2 d+e}}{c}}\right )}{x} \, dx,x,e^{\text {csch}^{-1}(c x)}\right )}{2 (-d)^{3/2}}\\ &=\frac {b c \sqrt {1+\frac {1}{c^2 x^2}}}{d}-\frac {a}{d x}-\frac {b \text {csch}^{-1}(c x)}{d x}+\frac {\sqrt {e} \left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}-\sqrt {-c^2 d+e}}\right )}{2 (-d)^{3/2}}-\frac {\sqrt {e} \left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1+\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}-\sqrt {-c^2 d+e}}\right )}{2 (-d)^{3/2}}+\frac {\sqrt {e} \left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}+\sqrt {-c^2 d+e}}\right )}{2 (-d)^{3/2}}-\frac {\sqrt {e} \left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1+\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}+\sqrt {-c^2 d+e}}\right )}{2 (-d)^{3/2}}-\frac {b \sqrt {e} \text {Li}_2\left (-\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}-\sqrt {-c^2 d+e}}\right )}{2 (-d)^{3/2}}+\frac {b \sqrt {e} \text {Li}_2\left (\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}-\sqrt {-c^2 d+e}}\right )}{2 (-d)^{3/2}}-\frac {b \sqrt {e} \text {Li}_2\left (-\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}+\sqrt {-c^2 d+e}}\right )}{2 (-d)^{3/2}}+\frac {b \sqrt {e} \text {Li}_2\left (\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}+\sqrt {-c^2 d+e}}\right )}{2 (-d)^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 1.69, size = 1211, normalized size = 2.34 \[ \text {result too large to display} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*ArcCsch[c*x])/(x^2*(d + e*x^2)),x]

[Out]

-(a/(d*x)) - (a*Sqrt[e]*ArcTan[(Sqrt[e]*x)/Sqrt[d]])/d^(3/2) + b*((c*Sqrt[1 + 1/(c^2*x^2)] - ArcCsch[c*x]/x)/d
 - ((I/16)*Sqrt[e]*(Pi^2 - (4*I)*Pi*ArcCsch[c*x] - 8*ArcCsch[c*x]^2 + 32*ArcSin[Sqrt[1 + Sqrt[e]/(c*Sqrt[d])]/
Sqrt[2]]*ArcTan[((c*Sqrt[d] - Sqrt[e])*Cot[(Pi + (2*I)*ArcCsch[c*x])/4])/Sqrt[-(c^2*d) + e]] - 8*ArcCsch[c*x]*
Log[1 - E^(-2*ArcCsch[c*x])] + (4*I)*Pi*Log[1 - (I*(-Sqrt[e] + Sqrt[-(c^2*d) + e])*E^ArcCsch[c*x])/(c*Sqrt[d])
] + 8*ArcCsch[c*x]*Log[1 - (I*(-Sqrt[e] + Sqrt[-(c^2*d) + e])*E^ArcCsch[c*x])/(c*Sqrt[d])] + (16*I)*ArcSin[Sqr
t[1 + Sqrt[e]/(c*Sqrt[d])]/Sqrt[2]]*Log[1 - (I*(-Sqrt[e] + Sqrt[-(c^2*d) + e])*E^ArcCsch[c*x])/(c*Sqrt[d])] +
(4*I)*Pi*Log[1 + (I*(Sqrt[e] + Sqrt[-(c^2*d) + e])*E^ArcCsch[c*x])/(c*Sqrt[d])] + 8*ArcCsch[c*x]*Log[1 + (I*(S
qrt[e] + Sqrt[-(c^2*d) + e])*E^ArcCsch[c*x])/(c*Sqrt[d])] - (16*I)*ArcSin[Sqrt[1 + Sqrt[e]/(c*Sqrt[d])]/Sqrt[2
]]*Log[1 + (I*(Sqrt[e] + Sqrt[-(c^2*d) + e])*E^ArcCsch[c*x])/(c*Sqrt[d])] - (4*I)*Pi*Log[Sqrt[e] + (I*Sqrt[d])
/x] + 4*PolyLog[2, E^(-2*ArcCsch[c*x])] + 8*PolyLog[2, (I*(-Sqrt[e] + Sqrt[-(c^2*d) + e])*E^ArcCsch[c*x])/(c*S
qrt[d])] + 8*PolyLog[2, ((-I)*(Sqrt[e] + Sqrt[-(c^2*d) + e])*E^ArcCsch[c*x])/(c*Sqrt[d])]))/d^(3/2) + ((I/16)*
Sqrt[e]*(Pi^2 - (4*I)*Pi*ArcCsch[c*x] - 8*ArcCsch[c*x]^2 - 32*ArcSin[Sqrt[1 - Sqrt[e]/(c*Sqrt[d])]/Sqrt[2]]*Ar
cTan[((c*Sqrt[d] + Sqrt[e])*Cot[(Pi + (2*I)*ArcCsch[c*x])/4])/Sqrt[-(c^2*d) + e]] - 8*ArcCsch[c*x]*Log[1 - E^(
-2*ArcCsch[c*x])] + (4*I)*Pi*Log[1 + (I*(-Sqrt[e] + Sqrt[-(c^2*d) + e])*E^ArcCsch[c*x])/(c*Sqrt[d])] + 8*ArcCs
ch[c*x]*Log[1 + (I*(-Sqrt[e] + Sqrt[-(c^2*d) + e])*E^ArcCsch[c*x])/(c*Sqrt[d])] + (16*I)*ArcSin[Sqrt[1 - Sqrt[
e]/(c*Sqrt[d])]/Sqrt[2]]*Log[1 + (I*(-Sqrt[e] + Sqrt[-(c^2*d) + e])*E^ArcCsch[c*x])/(c*Sqrt[d])] + (4*I)*Pi*Lo
g[1 - (I*(Sqrt[e] + Sqrt[-(c^2*d) + e])*E^ArcCsch[c*x])/(c*Sqrt[d])] + 8*ArcCsch[c*x]*Log[1 - (I*(Sqrt[e] + Sq
rt[-(c^2*d) + e])*E^ArcCsch[c*x])/(c*Sqrt[d])] - (16*I)*ArcSin[Sqrt[1 - Sqrt[e]/(c*Sqrt[d])]/Sqrt[2]]*Log[1 -
(I*(Sqrt[e] + Sqrt[-(c^2*d) + e])*E^ArcCsch[c*x])/(c*Sqrt[d])] - (4*I)*Pi*Log[Sqrt[e] - (I*Sqrt[d])/x] + 4*Pol
yLog[2, E^(-2*ArcCsch[c*x])] + 8*PolyLog[2, ((-I)*(-Sqrt[e] + Sqrt[-(c^2*d) + e])*E^ArcCsch[c*x])/(c*Sqrt[d])]
 + 8*PolyLog[2, (I*(Sqrt[e] + Sqrt[-(c^2*d) + e])*E^ArcCsch[c*x])/(c*Sqrt[d])]))/d^(3/2))

________________________________________________________________________________________

fricas [F]  time = 1.04, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {b \operatorname {arcsch}\left (c x\right ) + a}{e x^{4} + d x^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccsch(c*x))/x^2/(e*x^2+d),x, algorithm="fricas")

[Out]

integral((b*arccsch(c*x) + a)/(e*x^4 + d*x^2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {b \operatorname {arcsch}\left (c x\right ) + a}{{\left (e x^{2} + d\right )} x^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccsch(c*x))/x^2/(e*x^2+d),x, algorithm="giac")

[Out]

integrate((b*arccsch(c*x) + a)/((e*x^2 + d)*x^2), x)

________________________________________________________________________________________

maple [F]  time = 2.76, size = 0, normalized size = 0.00 \[ \int \frac {a +b \,\mathrm {arccsch}\left (c x \right )}{x^{2} \left (e \,x^{2}+d \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arccsch(c*x))/x^2/(e*x^2+d),x)

[Out]

int((a+b*arccsch(c*x))/x^2/(e*x^2+d),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ -a {\left (\frac {e \arctan \left (\frac {e x}{\sqrt {d e}}\right )}{\sqrt {d e} d} + \frac {1}{d x}\right )} + b \int \frac {\log \left (\sqrt {\frac {1}{c^{2} x^{2}} + 1} + \frac {1}{c x}\right )}{e x^{4} + d x^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccsch(c*x))/x^2/(e*x^2+d),x, algorithm="maxima")

[Out]

-a*(e*arctan(e*x/sqrt(d*e))/(sqrt(d*e)*d) + 1/(d*x)) + b*integrate(log(sqrt(1/(c^2*x^2) + 1) + 1/(c*x))/(e*x^4
 + d*x^2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {a+b\,\mathrm {asinh}\left (\frac {1}{c\,x}\right )}{x^2\,\left (e\,x^2+d\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*asinh(1/(c*x)))/(x^2*(d + e*x^2)),x)

[Out]

int((a + b*asinh(1/(c*x)))/(x^2*(d + e*x^2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {a + b \operatorname {acsch}{\left (c x \right )}}{x^{2} \left (d + e x^{2}\right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*acsch(c*x))/x**2/(e*x**2+d),x)

[Out]

Integral((a + b*acsch(c*x))/(x**2*(d + e*x**2)), x)

________________________________________________________________________________________